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1. Introduction 

Ovarian cancer is the most malignant gynecologic cancer causing an estimated 140,000 

deaths per year worldwide(Jemal et al 2011). In greater than 75% of incident cases, the 

disease is detected only after it has reached an advanced stage (stage III and IV) when 

standard therapy is unlikely to be curative. Even after maximal cytoreductive surgery 

followed by platinum-based chemotherapy, the survival rate at 5 years is only 15-30% 

(Kosary 1994). Epithelial ovarian cancer is a heterogeneous disease that can be subdivided 

into four histological categories: serous, clear cell, endometrial, and mucinous. The 

pathogenesis of the individual subtypes relies on different molecular and pathway 

aberrations and thus will likely respond with different sensitivities to systemic and targeted 

therapies(Kurman and Shih Ie 2008). The identification of critical molecular and pathway 

aberrations specific to each subtype could provide key insights into the mechanisms driving 

tumorigenesis and direct efforts in the development of targeted therapies.  

Tumors characteristically display alterations in gene expression that lead to the acquisition 

of the hallmark features of cancer: uncontrolled proliferation, evasion of growth suppression 

and of the immune system, resistance to death signals, unlimited replicative potential, 

development of a supportive microenvironment (including angiogenesis), and ability to 

invade and metastasize(Hanahan and Weinberg 2011). Aberrant gene expression is manifest 

through a number of different mechanisms including DNA copy number alterations 

(amplifications, deletions, gains and losses of whole chromosomes resulting in aneuploidy), 

epigenetic regulation via methylation or histone acetylation, fusion proteins and individual 

gene mutations. Amplifications that are critical to tumorigenesis likely are essential because 

they result in the overexpression of gene products on which the tumor is dependent. These 

are often referred to as “driver” genes, as dysregulated expression leads to the activation of 

oncogenic pathways, while other genes in the amplified region may or may not be 

overexpressed and instead are “passenger” genes. Analysis of individual amplifications 

have elucidated driver pathways of cancer and revealed potential targets for drug 

development. For example, amplification of the Her-2/neu gene occurs in 25-30% of breast 

cancers and is associated with a more aggressive phenotype(Slamon et al 1989). However, 

treatment with HER-2 targeted therapy, in particular trastuzumab, has dramatically 

improved the natural history of HER2-positive breast cancer(Ferretti et al 2007). Similarly, 
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non-small cell lung cancers with mutations in or amplification of the EGFR gene benefit 

from EGFR inhibitors. Several amplified genes have been identified in epithelial ovarian 

cancers. The Cancer Genome Atlas (TCGA) project recently published their results from a 

multicenter comprehensive effort to characterize the molecular abnormalities in high-grade 

serous ovarian carcinomas. In this study 489 clinically annotated stage II-IV high-grade 

serous ovarian cancer samples were analyzed for changes in mRNA expression, microRNA 

expression, DNA copy number, and DNA promoter methylation. Interestingly, the TCGA 

found a relatively low rate of recurrent mutations while copy number changes were 

relatively abundant(Cancer Genome Atlas Research Network, 2011). In light of the recent 

results of the TCGA, this chapter will discuss the major pathways (Figure 1) frequently 

amplified in ovarian cancers and review the clinical efficacy of therapeutic agents targeting 

these genes.  
 

 

Fig. 1. Pathways amplified in epithelial ovarian cancer. *represents targetable pathways 
discussed in this chapter. 

2. Global assessment of copy number variation in ovarian cancer 

DNA copy number variations can be identified using several techniques including 

cytogenetics, fluorescence in situ hybridization (FISH), comparative genomic hybridization 

(CGH), and single nucleotide polymorphism (SNP) arrays. The latter two have the 

advantage of providing an unbiased genome wide assessment of copy number variation 

and have been widely used to characterize the complex genomic alterations attributable to 
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ovarian cancer and reveal it to be a heterogeneous group of diseases(Gorringe et al 2010, 

Meinhold-Heerlein et al 2005, Nakayama et al 2007, Staebler et al 2002). Recent studies of the 

genomic alterations between invasive serous carcinomas and low grade or borderline serous 

tumors have identified dramatic differences in DNA copy number changes (Meinhold-

Heerlein et al 2005, Nakayama et al 2007, Staebler et al 2002). High-grade serous carcinomas 

uniformly exhibited more extensive DNA copy number variations than borderline tumors 

or low-grade serous carcinomas (Figure 2). The frequency and amplitude of changes was 

higher in invasive serous carcinomas and involve the majority of chromosomes through 

gain or loss of discrete subchromosomal regions, chromosome arms, or whole 

chromosomes. By contrast, low-grade tumors exhibit significantly fewer copy number gains 

and few chromosomal losses. The pervasive changes seen within the chromosomes of high-

grade serous ovarian carcinomas suggest that significant genomic instability is a critical 

feature of this disease. 

 

 

Fig. 2. Genome-wide distribution of DNA copy number changes in low-grade and high-
grade ovarian serous carcinomas. Each column represents an individual tumor sample. 
DNA copy number changes are represented as pseudocolor gradients corresponding to the 
folds of increase (red boxes) and decrease (blue boxes), as compared to pooled normal 
samples. Reproduced with permission (Nakayama et al 2007). 

www.intechopen.com



 
Ovarian Cancer – Basic Science Perspective 

 

290 

Similar results were found in the TCGA analysis of the molecular aberrations in high-grade 
serous ovarian carcinomas. The project identified only 9 significant recurrently mutated 
genes, of which TP53, BRCA1, and BRCA2 were the most common(Cancer Genome Atlas 
Research Network, 2011). In contrast, copy number aberrations were abundant. One 
hundred and thirteen significant focal DNA copy number aberrations, including 8 regional 
recurrent gains, 22 regional recurrent losses, and 63 regions of focal amplification, were 
identified. Five of the regional gains were present in >50% of tumors. Analysis of the focal 
amplifications identified a number of genes that were highly amplified and potential 
therapeutic targets.  
The results of these studies clearly highlight the complex molecular and genetic changes that 
are harbored by ovarian serous carcinomas. Copy number alteration alone, however, does 
not necessarily indicate that the region plays a causal role in tumorigenesis. One of the 
challenges with these studies is identifying the potential oncogenes or oncogenic pathways 
within the affected chromosomal regions that are likely to be responsible for the 
pathogenesis of ovarian cancer and/or should be a focus for drug development. In the 
following sections, we will discuss some of the candidate genes that have been identified 
and are being evaluated in clinical practice.  

3. PIK3CA and AKT2 

The phosphoinositide 3-kinase (PIK3)-AKT2 signaling pathway regulates diverse cellular 
functions including cellular proliferation, migration, metabolic homeostasis, apoptosis and 
survival, and the dysregulation of this pathway has been implicated in the tumorigenesis of 
a variety of cancers(Karakas et al 2006, Stokoe 2005). AKT2 is a serine/threonine protein 
kinase containing SH2-like (Src homology 2-like) domains and is a member of the AKT 
subfamily. It was originally identified as one of the putative human homologs of the v-akt 
oncogene of the retrovirus AKT8 (Staal 1987). AKT2 is activated by its upstream regulator 
PI3K. PIK3CA is the 110kD component of the catalytic subunit of PIK3 and aberrations in 
normal signaling of PIK3CA and AKT2 have been implicated in ovarian cancer pathogenesis 
making them potential targets for drug development(Cheng et al 1992, Dancey 2004, Hu et 
al 2005). Overexpression of activated PIK3CA results in phosphorylation of AKT and 
cellular transformation and inactivation of AKT by dominant negative mutants abrogates 
the survival advantage conferred by activated PI3K (Kang et al 2005, Link et al 2005). PTEN 
(phosphatase and tensin homologue deleted on chromosome 10) is a dual lipid and protein 
phosphatase that targets PIP3 (phosphatidylinositol-3,4,5- triphosphate), the target of PIK3. 
This pathway may be aberrantly activated by amplification or mutation of AKT2 or 
PIK3CA, or deletion, promoter methylation, or functional loss of PTEN which can lead to 
the excessive activation of downstream effectors, such as mTOR(Altomare et al 2004, Gao et 
al 2004, Mabuchi et al 2009).  
AKT2 amplification has been reported in 5-29% of ovarian cancer cases(Bellacosa et al 1995, 
Cheng et al 1992, Courjal et al 1996, Nakayama et al 2006b, Park et al 2006). In comparison, 
AKT2 was not amplified in benign or borderline ovarian tumors(Bellacosa et al 1995, 
Nakayama et al 2006b). Similarly, low-level amplifications were present in PIK3CA in high-
grade carcinomas but not in serous borderline tumors. Twenty seven percent of cases 
showed amplification in either gene emphasizing how frequently components of this 
pathway are amplified in ovarian cancer and coamplification of the two genes was seen in a 
small subset(Nakayama et al 2006b). The findings of this study also support the dualistic 
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model of ovarian serous carcinogenesis in which high-grade and low-grade ovarian serous 
tumors develop along distinctly different molecular pathways(Kurman and Shih Ie 2008).  
Pathway activation through PIK3CA can occur through either amplification or activating 
mutation of the catalytic subunit. Mutations of PIK3CA are typically associated with 
endometrioid and clear cell subtypes and are associated with lower tumor stage and 
grade(Campbell et al 2004, Kolasa et al 2009, Willner et al 2007). Amplifications, on the other 
hand, have been detected in all histological subtypes, though there was an association with 
poorer differentiation. PIK3CA amplification has been reported in 13-24% of ovarian 
carcinomas and is associated with increased expression of phosphorylated AKT indicating 
that amplification results in increased activation of the pathway(Campbell et al 2004, Kolasa 
et al 2009, Nakayama et al 2006b, Willner et al 2007, Woenckhaus et al 2007).  
Clinical data is lacking in the majority of these studies and the prognostic role of AKT and 
mTOR in ovarian cancer is unclear. The median survival of patients with normal levels of 
AKT2 was longer than in patients whose tumors harbored AKT2 amplifications (45 versus 
22 months, respectively), however the study was limited by the small number of patients for 
which survival data was available and did not reach statistical significance(Bellacosa et al 
1995). The activation of AKT and increased downstream mTOR expression has been 
associated with more aggressive disease and shorter patient survival(Bunkholt Elstrand et al 
2010). The effect of PIK3CA amplification on survival is also unclear with some studies 
showing no influence of amplification on overall survival while another showed that 
PIK3CA amplification was associated with shorter survival(Kolasa et al 2009, Willner et al 
2007, Woenckhaus et al 2007). 
PIK3-AKT2 pathway activation may affect response to therapy. PIK3CA amplification was 
identified more frequently in patients who were platinum resistant and in patients who did 
not achieve a complete remission to chemotherapy(Kolasa et al 2009). Disease recurrence 
was increased in the group with amplifications, however this study was limited by its small 
size and overall survival was not affected. Further studies in ovarian cancer cell lines with 
acquired cisplatin resistance shown that the cells harbor increased activation of the 
Akt/mTOR survival pathway and that inhibition of the pathway resensitizes the cells to 
cisplatin treatment(Lee et al 2005b, Peng et al 2010). However, whether they can be used as 
predictors of therapeutic response has not been established. 
Given the relatively common activation of this pathway in tumorigenesis, there has been 
considerable interest in developing therapeutic drugs to target the PTEN/PIK3/AKT 
pathway for use in multiple cancers. The most successful approach thus far has been the 
development of mTOR inhibitors, which have been approved for use in renal cell 
carcinomas and pancreatic neuroendocrine tumors. Rapamycin, and its derivative inhibitors 
(temsirolimus, everolimus, and ridaforolimus) are currently in use in multiple clinical trials 
specifically evaluating their effectiveness for the treatment of advanced ovarian cancer. The 
current progress of the development of these drugs for ovarian cancer was the topic of a 
recent excellent review (Mabuchi et al 2011). Preclinical data suggest that these agents may 
be effective both as monotherapy as well as in combination with traditional cytotoxic 
chemotherapy and may even be effective as preventative agents. The majority of these 
studies are ongoing and have not completed recruitment, however the results of a few have 
been published (Table 1). In a phase I clinical trial designed to determine the recommended 
phase II dose of weekly temsirolimus and topotecan for the treatment of advanced and/or 
recurrent gynecologic malignancies, the toxicities of the combination were dose-limiting 
(Temkin et al 2010). Seven participants with ovarian cancer were enrolled in the study but 
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the authors do not report the best response for these participants; nine of the 11 evaluable 
participants on the study had stable disease. In a Phase I study of temsirolimus, carboplatin, 
and paclitaxel in patients with endometrial and ovarian cancers, the combination was well 
tolerated and a recommended phase II dose was established(Oza et al 2009). In addition, 22 
of the 26 participants with follow-up data showed either partial response (38.5%) or stable 
disease (46%) for a median duration of 7 months. In a phase II trial combining targeted 
therapies, temsirolimus and bevacizumab, a monoclonal antibody targeting VEGF-A, were 
given to patients with recurrent epithelial ovarian cancer who had received ≤2 
chemotherapy regimens for recurrent disease. This study met its first stage goal of 14 
participants remaining progression free at 6 months and has been reopened for second stage 
accrual(Morgan et al 2011). Rapamycin and its analogues predominantly inhibit mTOR 
complex 1 (mTORC1) without affecting the activity of mTORC2. A novel ATP-competitive 
inhibitor of mTOR kinase activity, AZD8055, inhibits both the mTORC1/mTORC2 and 
prevents the feedback activation of AKT that is observed with the rapalogues and has 
completed phase I clinical trial in advanced solid malignancies(Banerji et al 2011, Chresta et 
al 2010).   
 

Therapy Phase # Pts Selection Criteria Outcome Comments 

Temsirolimus + 
Topotecan 
(Temkin et al 
2010) 
 

I 15  
(7 ovarian 
cancer) 

advanced or 
recurrent 
gynecologic 
malignancy 
refractory to 
curative 
therapy 

9/11 SD Toxicities of the 
combination were 
dose limiting, 
intolerable in pts 
previously treated 
with radiation 

Temsirolimus + 
Carboplatin  
+ Paclitaxel 
(Oza et al 2009) 

I 31 advanced solid 
malignancies 
suitable for 
carboplatin and 
paclitaxel 
chemotherapy 
who had not 
received more 
than 2 prior lines 
of chemotherapy 

10/26 PR 
12/26 SD 

Median duration of 
response 7 months 

Temsirolimus + 
Bevacizumab 
(Morgan et al 
2011) 

II 31 recurrent 
epithelial OC 
who had received 
≤ 2 
chemotherapy 
regimens for 
recurrent disease 

3/25 PR 
9/25 SD 

Met first stage 
goal, reopened for 
second stage 
accrual 
(NCT01010126) 

Table 1. Selected Clinical Trials of mTOR inhibitors in Ovarian Cancer. 

Several other PI3K-AKT pathway inhibitors (Table 2) are in early clinical development. Of 
these, GDC-0941, an inhibitor of PIK3CA, has shown early signs of possible clinical efficacy 
in an ovarian cancer patient with a PTEN negative tumor(Moreno Garcia et al 2011). MK-
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2206, an allosteric AKT inhibitor, showed preclinical efficacy in ovarian cancer cell lines 
with synergistic responses when combined with other cytotoxic agents such as doxorubicin, 
docetaxel, and carboplatin. It is currently under investigation in a phase II trial evaluating 
its efficacy as monotherapy specifically in ovarian cancers exhibiting defects in the 
PI3K/AKT pathway while several other phase I trials are evaluating its safety in 
combination with other chemotherapeutic agents(Hirai et al 2010). The results of these and 
other ongoing studies of PI3K-AKT pathway inhibitors are eagerly awaited. 
 

Drug Target Comments 

Everolimus mTOR inhibitor Under evaluation in Phase I and II 
trials for ovarian cancer 

OSI-027 ATP-competitive mTOR inhibitor  

AZD-8055 ATP-competitive mTOR inhibitor Dual mTORC1/mTORC2 inhibitor, 
prevents feedback activation of 
AKT observed with rapalogues 

CH5132799 Selective class I PI3K inhibitor Anti-tumor activity in vitro and in 
animal models 

GDC-0941 PIK3CA inhibitor One ovarian cancer patient (PTEN 
negative) showed 30% response by 
PET & 80% by CA-125, stayed on 
study for ~5 months(Moreno Garcia 
et al 2011) 

BEZ235 Dual PI3K/mTOR inhibitor Anti-tumor activity in mouse 
model, undergoing evaluation as 
monotherapy and in combination 
with cytotoxic chemotherapy 

MK-2206 Allosteric AKT inhibitor Currently being evaluated in 
recurrent Grade 2 or 3 ovarian, 
fallopian tube, or primary 
peritoneal cancer with evidence of a 
defect in the PI3K/AKT pathway 

Table 2. Other PI3K-AKT pathway inhibitors with pre-clinical efficacy in ovarian cancer. 

4. Epidermal growth factor receptors 

The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases has been 
implicated in the oncogenic transformation of a number of cancers. This family of genes 
encodes for four transmembrane tyrosine kinase receptors commonly referred to as EGFR 
(HER1/erbB1), HER2/neu (erbB2), HER3 (erbB2) and HER4 (erbB4). They each consist of a 
ligand-binding extracellular domain, an intracellular kinase domain, and a C-terminal 
signaling tail. The receptors are activated by binding to one of more than 30 ligands that 
then allow the formation of homodimers or heterodimers; except HER2 has no known 
ligand but is able to form heterodimers with other ligand-bound EGFR family members. 
Interestingly, HER3 lacks intrinsic kinase activity and therefore must form a heterodimer to 
be active and its preferred binding partner is HER2/neu. Activated dimers recruit signaling 
molecules through a phosphorylated cytoplasmic domain that initiates a signaling cascade 
leading to the activation of downstream pathways such as PI3K-AKT and MAPK that 
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ultimately regulate cellular proliferation, migration, invasion, and apoptosis. Two recent 
excellent reviews have been published on the role of these receptors in ovarian cancer(Sheng 
and Liu 2011, Siwak et al 2010); herein we will focus on the clinical implications of EGFR, 
HER2/neu and HER3, the three receptors found to be amplified in ovarian cancers. 
Amplification of the EGFR gene has been identified in 4-22% of ovarian cancers and, for the 

most part, amplification correlates with overexpression(Dimova et al 2006, Lassus et al 2006, 

Stadlmann et al 2006, Vermeij et al 2008). Some studies have delineated the level of 

amplification into high and low categories. While high level amplification occurs in a small 

percentage of tumors (4-12%), low level gain has been reported in as many as 43% of 

cases(Dimova et al 2006, Lassus et al 2006). High-level amplifications have been associated 

with malignant tumors and worse histologic grade. Results are mixed on the influence of 

EGFR overexpression on patient outcome. Several studies showed no association with 

survival, while EGFR overexpression was found to be a strong prognostic indicator in other 

studies(Baekelandt et al 1999, Elie et al 2004, Lassus et al 2006, Lee et al 2005a, Nicholson et 

al 2001). The discrepancy may be related to different methodologies used in staining and 

analysis.  

Preclinical data suggests that targeting EGFR is an effective approach to treating ovarian 

cancer. Ovarian cancer cells treated with antisense RNA or dominant-negative approaches 

showed reduced proliferation, invasion, and tumorigenicity in a rat ovarian tumor 

model(Alper et al 2000, Alper et al 2001, Chan et al 2005). A human-mouse chimeric anti-

EGFR monoclonal antibody (C225, cetuximab) resulted in decreased activity of cyclin 

dependent kinases and inhibition of ovarian cancer cellular proliferation by 40-50% and 

when combined with cytotoxic chemotherapy enhanced the efficacy of those agents(Ye et al 

1999). However, the results have been inconsistent and targeting of EGFR with either 

gefitinib or cetuximab in several ovarian cancer cell lines showed minimal response(Bull 

Phelps et al 2008). 

Two types of EGFR inhibitors are currently in clinical use: monoclonal antibodies (Table 3) 

and small molecule tyrosine kinase inhibitors (TKIs), and several have been evaluated for 

the treatment of ovarian cancer. The studies have taken different strategies, some requiring 

EGFR immunohistochemical positivity as an inclusion criterion, while others evaluated 

EGFR expression only after enrollment. Overall the results have been disappointing with 

some studies showing, at best, modest response. In the two studies using single agent EGFR 

monoclonal antibodies, cetuximab and matuzumab, overall response rates were 4% and 0%, 

respectively(Schilder et al 2009, Seiden et al 2007). There are five trials evaluating EGFR 

monoclonal antibodies in combination with cytotoxic chemotherapy, with three ongoing. Of 

the two involving cetuximab, a phase II trial of cetuximab in combination with carboplatin 

in recurrent, platinum-sensitive disease yielded an objective response rate of 34.6%, a rate 

that was too low to warrant further evaluation(Secord et al 2008). The other Phase II study 

that evaluated the combination of cetuximab, paclitaxel, and carboplatin in the initial 

treatment of advanced-stage ovarian, primary peritoneal, or fallopian tube cancers did not 

show an increase in progression free survival compared to historical controls(Konner et al 

2008). Three separate phase II trials are evaluating panitumumab with cytotoxic 

chemotherapy; the results of these studies are not yet available but are eagerly awaited. 
Small molecule tyrosine kinase inhibitors (TKI) targeting EGFR activity have been 
investigated in several trials specifically focused on ovarian cancer (Table 4). Single agent 
TKI did not show any substantial clinical benefit (0-9% for gefitinib(Posadas et al 2007, 
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Schilder et al 2005), 0% for CI-1033 an irreversible EGFR inhibitor(Campos et al 2005)). TKIs 
combined with cytotoxic chemotherapy, anti-angiogenic therapy, or hormonal therapy have 
also shown limited clinical efficacy and in some cases excessive toxicity(Campos et al 2010, 
Chambers et al 2010, Nimeiri et al 2008, Vasey et al 2008). The reason behind the relative 
failure of EGFR targeted therapies is not understood, but may be related to constitutive 
activation of downstream pathways, overexpression of ligands, or activation of alternative 
signaling pathways (reviewed in (Bianco et al 2007, Siwak et al 2010)). Despite the promising 
preclinical results based on the amplification data, these therapeutic agents cannot be 
recommended outside of a clinical trial setting for the treatment of ovarian cancer. 
 

Therapy Phase # Pts Selection Criteria Outcome Comments 

Cetuximab 
(Schilder et 
al 2009) 

II 25 Persistent/recurrent 
ovarian or primary 
peritoneal carcinoma 

1/25 PR 
9/25 SD 

Median progression 
free survival 1.8 
months 

Matuzumab  
(Seiden et al 
2007) 

II 37 recurrent, EGFR-
positive 
ovarian, or primary 
peritoneal cancer 

6/37 SD  

Cetuximab + 
Carboplatin 
(Secord et al 
2008) 

II 28 (26 
EGFR +) 

relapsed platinum-
sensitive ovarian or 
primary peritoneal 
carcinoma 

3/28 CR 
6/28 PR 
8/28 SD 

Did not meet criteria 
for a second stage of 
accrual 

Cetuximab + 
Carboplatin 
+ Paclitaxel 
(Konner et al 
2008) 

II 40 Initial treatment of 
stage III or IV, 
debulked tumor, EGFR 
positive by IHC 

Median 
PFS 14.4 
mths, 
PFS at 18 
mths 
38.8% 

No prolongation of 
PFS when compared 
to historical data 

Panitumumab 
+ 
Gemcitabine 

II  Persistent/recurrent 
platinum-resistant 
epithelial ovarian, 
primary peritoneal or 
fallopian tube cancer 

 Ongoing 
(NCT01296035) 

Panitumumab 
+ Pegylated 
Liposomal 
Doxorubicin 

II  Platinum resistant 
epithelial primary 
ovarian, primary 
fallopian or primary 
peritoneal cancer 

 Ongoing 
(NCT00861120) 

Panitumumab 
+ 
Carboplatin 
+ Pegylated 
Liposomal 
Doxorubicin 

II  Platinum-sensitive 
recurrent epithelial 
ovarian cancer, 
primary peritoneal 
carcinomatosis or 
fallopian tube cancer, 
KRAS wild type 

 Opening soon 
(NCT01388621) 

Table 3. Anti-EGFR monoclonal antibodies. 
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Therapy Phase # Pts Selection Criteria Outcome Comments 

CI-1033/  
Canertinib 
(Campos 
et al 2005) 

II 105 Persistent/recurrent 
epithelial ovarian 
cancer 

18/52 SD 
at highest 
dose level 

median PFS 2.2 mths, 
median OS 9.1 mths at 
highest dose level 

Gefitinib 
(Posadas 
et al 2007) 

II 24 Recurrent epithelial 
ovarian cancer 

9/24 SD EGFR and pEGFR levels 
decreased during therapy in 
>50%, however not 
associated with clinical 
benefit 

Gefitinib 
(Schilder 
et al 2005) 

II 27  Persistent/recurrent 
epithelial ovarian or 
primary peritoneal 
carcinoma 

1/27 PR  4 pts with PFS ≥6 mths, trial 
did not continue to second 
stage, responder had 
activating EGFR mutation, 
trend towards response in 
EGFR positive pts 

Gefitinib + 
Anastrazole 
(Krasner 
et al 2005) 

II 35 Recurrent ovarian, 
peritoneal or tubal 
carcinoma, ER 
and/or PR positive 
by IHC 

1/23 CR 
14/23 SD 

 

Gefitinib + 
Tamoxifen 
(Wagner 
et al 2007) 

II 56 Refractory, 
recurrent epithelial 
ovarian cancer  

16/56 SD Tumor did not need to be 
positive for ER or EGFR by 
IHC 

Erlotinib 
(Gordon et 
al 2005) 

II 34 Refractory, 
recurrent, ovarian 
cancer, EGFR 
positive by IHC 

2/34 PR 
15/34 SD 

 

Erlotinib + 
Carboplatin 
+ 
Docetaxel 
(Vasey et 
al 2008) 

Ib 45 Chemonaive 5/23 CR 
7/23 PR 
 

Objective response rate 
(52%) lower than in 
historical controls (59%), 
unselected for EGFR 
expression 

Erlotinib + 
Bevacizumab 
(Chambers 
et al 2010) 

II 40 Platinum resistant 1/39 CR 
8/39 PR 
10/39 SD 

ORR not improved 
compared to historical 
controls of Bevacizumab 
alone 

Erlotinib + 
Bevacizumab 
(Nimeiri 
et al 2008) 

II 13 Recurrent ovarian, 
primary peritoneal 
or fallopian tube 
cancer 

1/13 CR 
1/13 PR 
7/13 SD 

Combination not superior 
to single-agent 
Bevacizumab, rate of GI 
perforation a concern 

 
 

Table 4. Anti-EGFR small molecule inhibitors. 
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Expression and amplification levels of Her2/neu in ovarian cancer have been extensively 

evaluated, however the data is inconsistent and its significance is still controversial. Early 

studies showed amplification in 26% with corresponding overexpression and an analysis of 

the subset with available survival data showed a significantly longer median overall 

survival in women whose tumors did not exhibit Her2 amplification (1879, 959, and 243 

days for women having one copy, 2-5 copies and >5 copies of Her2/neu gene, respectively, 

p <0.0001)(Slamon et al 1989). In subsequent studies, observed rates of Her2/neu 

amplification in ovarian cancer has been reported in up to 66% of epithelial ovarian cancers 

with overexpression reported in up to 76%(Camilleri-Broet et al 2004, Press et al 1990, Ross 

et al 1999, Serrano-Olvera et al 2006, Slamon et al 1989, Tuefferd et al 2007, Vermeij et al 

2008). Levels of amplification differ with low copy number amplification (<2) observed in as 

many as 79%, 3-5 copies in 14%, >5 copies in 6.8%, and >10 copies in 1.8%(Lassus et al 2004). 

The level of amplification in general has correlated with level of overexpression by IHC, 

however this too has been called into question(Lassus et al 2004, Mano et al 2004, Pegram et 

al 1997, Wu et al 2004) and may be reflective of other mechanisms responsible for 

overexpression other than amplification.  

Several studies have shown an association between Her2/neu overexpression/ 

amplification and poor response to therapy and prognosis, however more recent reports 

refute this association(Berchuck et al 1990, Bookman et al 2003, Farley et al 2009, Pegram 

et al 1997, Rubin et al 1994, Tuefferd et al 2007). In a recent Gynecologic Oncology Group 

study that evaluated Her2/neu amplification in 133 epithelial ovarian cancers, 

amplification (>2 copies) was only identified in 7% and was not an independent 

prognostic factor for progression free survival or overall survival(Farley et al 2009). A 

phase II trial evaluating the efficacy of trastuzumab, a monoclonal humanized anti-Her2 

antibody, in patients with recurrent ovarian cancer showed that only 11% of tumor 

samples exhibited elevated expression of Her2 by immunohistochemistry. Of the 

participants treated with trastuzumab, the overall response rate was only 7% with a 

progression free interval of 2 months(Bookman et al 2003). Overall, it does not appear that 

Her2/neu amplification has predictive or prognostic value in epithelial ovarian cancer 

and the value of treatment with HER2 directed monotherapy is limited (Table 5). Despite, 

preclinical evidence of effectiveness(Gordon et al 2006), pertuzumab, a recombinant, 

humanized monoclonal antibody that binds the HER2 dimerization domain impeding 

dimerization of HER2 with other family members and thus prevents activation of 

downstream pathways, has shown similarly low response rates in clinical trials in the 

treatment of ovarian cancer. As a single agent, the response rate was only 4.3% and in a 

randomized phase II study the addition of pertuzumab to gemcitabine improved the 

objective response rate to 13.8% from 4.6%(Gordon et al 2006, Makhija et al 2010). 

Treatment response appeared to correlate with Her2 phosphorylation status in one study 

and low Her3 expression in another, however these markers have not yet been validated 

in further studies. Lapatinib, a dual EGFR/HER2 TKI, has also shown limited clinical 

response and excessive toxicity(Joly et al 2009, Kimball et al 2008). Preliminary results of a 

phase I/II trial combining lapatinib with carboplatin and paclitaxel showed promising 

preliminary results, but the final results of the trial have not been published(Rivkin et al 

2008). Further studies will be necessary to determine whether lapatinib may be a useful 

agent in ovarian cancer. 
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Therapy Phase # Pts Selection Criteria Outcome Comments 

Trastuzumab 
(Bookman et 
al 2003) 

II 41 

persistent or 
recurrent epithelial 
ovarian cancer, 
2/3+ HER2 by 
IHC 

1/41 CR 
2/41 PR 
16/41 
SD 

serum HER2 was not 
associated with 
clinical outcome 

Pertuzumab 
(Gordon et al 
2006) 

II 117 
Recurrent 
epithelial ovarian 
cancer 

5 PR 
8 SD 

Median PFS 6.6 wks, 
trend toward 
improved PFS for pts 
with pHER2+ disease 

Pertuzumab 
+ 
Gemcitabine 
vs Placebo +  
Gemcitabine 
(Makhija et al 
2010) 

II 

65 
(combo) 
65 
(placebo) 

advanced, 
platinum-resistant 
epithelial ovarian, 
fallopian tube, or 
primary peritoneal 
cancer 

9/65 PR 
(combo) 
3/65 PR 
(placebo) 

Low HER3 mRNA 
expression may 
predict pertuzumab 
clinical benefit 

Lapatinib + 
Topotecan 
(Joly et al 
2009) 

II 
39 (37 
ovarian 
cancer) 

Ovarian  cancer 
relapsed w/in 12 
months  

0/2 PR 
7/9 SD 

Prematurely stopped 
for lack of efficacy 

Lapatinib + 
Carboplatin 
(Kimball et al 
2008) 

I 12 

Recurrent 
platinum sensitive 
epithelial ovarian 
carcinoma 

3/11 PR 
3/11 SD 

unacceptable 
toxicities, excessive 
treatment delays and 
limited clinical 
responses 

Lapatinib + 
Carboplatin 
+ Paclitaxel 
(Rivkin et al 
2008) 

I/II 25 
Recurrent ovarian 
cancer 

CR 21% 
PR 29% 
SD 29% 

final results not 
published 

 

Table 5. Selected Clinical Trials of HER2/neu Targeted Agents in Ovarian Cancer. 

The roles of HER3 and HER4 in ovarian cancer have been less extensively studied(Sheng 

and Liu 2011). HER3 amplification and overexpression in ovarian cancer has been described 

and in one study was significantly associated with poor survival (median survival time 3.3 

years vs. 1.8 years for patients with low vs. high HER3 expression)(Sheng and Liu 2011, 

Tanner et al 2006, Tsuda et al 2004). Antibodies directed against the extracellular domain of 

HER3 diminished HER2 activity and attenuated the activation of downstream effectors(van 

der Horst et al 2005). Compensatory overexpression of HER3 has also been implicated as a 

mechanism of resistance to other EGFR inhibitors(Sheng and Liu 2011). These data suggest 

that targeting HER3 may be an effective treatment strategy and three monoclonal antibodies 

that target HER3 are being tested in early phase clinical trials for advanced solid tumors 

(U3-1287, MM-121, and MM-111 which targets both HER2 and HER3). The expression of 
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HER4 has been variably reported in ovarian cancer, ranging from nearly absent to almost 

ubiquitously expressed(Sheng and Liu 2011). Interestingly, overexpression of HER4 in 

ovarian cancer was associated with a trend toward improved progression free and overall 

survival, an effect that has also been seen in breast cancer possibly by promoting 

differentiation(Pejovic et al 2009, Rajkumar et al 1996). However, these results have not been 

confirmed and the role of HER4 in ovarian cancer is still undefined. 

5. Notch signaling pathway 

The Notch signaling pathway is an evolutionarily conserved pathway that regulates cellular 

differentiation, proliferation, and apoptosis. The family of Notch receptors (Notch 1-4) are 

large transmembrane proteins that consist of an extracellular ligand binding domain, a 

transmembrane domain, and an intracellular domain. Activation of the receptors is a multi-

step process consisting of an initial cleavage event allowing the extracellular domain to 

heterodimerize with transmembrane ligands (Delta-like 1, 3, 4 and Jagged 1 and 2). 

Following ligand binding a second cleavage event releases the Notch extracellular domain 

(ECD) causing the ECD and the ligand to be endocytosed. Cleavage by gamma secretase 

following endocytosis releases the active Notch intracellular domain (NICD) allowing for 

translocation to the nucleus and heterodimerization to transcription factors and recruitment 

of coactivators to form a functionally active transcriptional complex(Rose 2009). Of the 

Notch receptors, Notch1 and Notch3 have been implicated in ovarian cancer. Reports of 

Notch1 expression in ovarian cancer are inconsistent with some showing increased 

expression in carcinomas compared to benign tumor or normal ovarian surface epithelium, 

while others showed decreased mRNA expression in carcinomas(Hopfer et al 2005, Rose et 

al 2010, Wang et al 2010).  

The association between Notch3 and ovarian cancer has been more extensively studied. 

High level Notch3 amplification has been observed in 7.8% of high-grade serous 

carcinomas (Nakayama et al 2007), while high level protein overexpression was found in 

63% of serous carcinomas and was significantly correlated with advanced stage, 

likelihood of metastasis, chemoresistance and poor overall survival(Jung et al 2010). 

Overexpression of the Notch ligands, Jagged-1 and Jagged-2, has also been identified in 

ovarian tumor cells lending support that activation of the Notch pathway promotes 

ovarian cancer proliferation and that inhibition of this pathway may be a viable 

therapeutic approach(Choi et al 2008, Hopfer et al 2005). Similarly, the TCGA identified 

alterations in the Notch pathway in 22% of high-grade serous ovarian carcinoma samples, 

which included amplification/mutation of Notch3, amplification of Jagged-1 and Jagged-

2, and amplification/mutation of MAML1-3, a family of Notch transcriptional 

coactivators(Cancer Genome Atlas Research Network, 2011). Inactivation of Notch 

signaling through targeting Jagged-1 or direct inhibition of Notch by preventing cleavage 

with a gamma-secretase inhibitor decreases the proliferative potential of and increases 

apoptosis in ovarian cancer cell lines and xenograft models(Park et al 2006, Steg et al 

2011). Targeting Jagged-1 also resulted in decreased microvessel density in xenografts 

suggesting Notch signaling may play a role in angiogenesis. 

Notch pathway inhibitors have recently moved into clinical trials. Early reports of a phase I 

clinical trial of RO4929097, a selective oral gamma-secretase inhibitor, showed prolonged 
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stable disease in 3 ovarian cancer patients (Table 6)(Tolcher et al 2010). Combination therapy 

is being evaluated in two ongoing early phase clinical trials in which RO4929097 is 

combined with either cediranib, a VEGF inhibitor, or GDC-0449, a hedgehog inhibitor. 

Whether this will be a useful agent in treating ovarian cancer remains to be seen. 

 
 

Drug Target Comments 

R04929097 
Selective oral 
gamma-secretase 
inhibitor of Notch 

Preliminary efficacy in 3 ovarian cancer 
patients(Tolcher et al 2010). Two early 
phase combination trials ongoing: 
NCT01131234 (+ cediranib), 
NCT01154452 (+ GDC-0449) 

PD 0332991 CDK4/6 inhibitor 
Current being tested in NCT01037790 
which includes ovarian germ cell tumors 

BMS-387032 (SNS-032) CDK2 inhibitor  

Flavopiridol 
(Alvocidib) 

Multi-CDK 
inhibitor 

Ongoing phase II trial in combination 
with cisplatin in epithelial ovarian 
cancers (NCT00083122) 

ON 01910.Na 
Polo-Like Kinase 1 
inhibitor 

Durable response in a platinum-
refractory ovarian cancer pt, maintained 
progression free for 24 months  
(Jimeno et al 2008) 

MLN8237 
Aurora A kinase 
inhibitor 

Durable response (PR) in a pt with 
platinum-refractory ovarian cancer with 
continued treatment over 1.5 years(Dees 
et al 2010), ongoing phase II in 
combination with paclitaxel 
(NCT01091428) 

ENMD-2076 
Aurora kinase 
inhibitor 

3/46 PR, 27/46 SD in preliminary report 
from phase II trial in platinum resistant 
ovarian cancer(Matulonis et al 2011) 

Table 6. Other pathway inhibitors with pre-clinical efficacy in ovarian cancer. 

6. Cell cycle regulatory proteins 

Sustaining proliferative signaling through disruption of cell cycle regulatory checkpoints is 

one of the hallmarks of cancer(Hanahan and Weinberg 2011). Aberrant expression of cyclins, 

cyclin dependent kinases (Cdks), and cyclin-Cdk inhibitors has been linked to tumorigenesis 

in multiple cancer models(Deshpande et al 2005, Hwang and Clurman 2005). Studies in 

epithelial ovarian cancer have shown inconsistent associations between individual cell cycle 

regulatory protein expression and patient outcome (reviewed in Nam and Kim(Nam and 

Kim 2008)). Among the best studied in ovarian cancer is cyclin E. Amplification of the cyclin 

E gene occurs in 7-65% of ovarian cancers, typically resulting in overexpression of the cyclin 

E protein(Cancer Genome Atlas Research Network, 2011, Courjal et al 1996, Marone et al 
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1998, Mayr et al 2006, Nakayama et al 2007, Nakayama et al 2010, Park et al 2006, Schraml et 

al 2003a). Cyclin E expression has been found in as many as 97% of ovarian cancer/primary 

peritoneal cancer samples(Davidson et al 2006). In suboptimally debulked advanced 

epithelial ovarian cancers obtained from women enrolled in GOG111, the expression level of 

cyclin E correlated with a 6 month shorter median survival and worse overall 

survival(Farley et al 2003). Analysis of the subset of patients with serous carcinomas (72% of 

total study) showed an 11 month difference in median survival and suggested that the role 

of cyclin E was limited to the serous histology as nonserous tumors showed no statistically 

significant difference in survival based on cyclin E expression. The association between 

cyclin E amplification and poor outcome has also been identified in recent German and 

Japanese studies, although the correlation was not statistically significant in the latter(Mayr 

et al 2006, Nakayama et al 2010).  Two independent labs have also suggested that 

amplification of the cyclin E gene was associated with primary treatment resistance and 

targeting cyclin E expression with siRNA reduced cell viability and increased 

apoptosis(Etemadmoghadam et al 2009, Etemadmoghadam et al 2010, Nakayama et al 

2010). These studies suggest that cyclin E amplification/expression may serve as both a 

prognostic and predictive factor in ovarian cancer as well as a therapeutic target in the 

treatment of ovarian cancer. 

Several studies have evaluated the expression levels of many other cell cycle regulatory 

proteins, however few appear to show gene amplification. Although overexpression of 

cyclin D has been reported, levels of expression did not correlate with clinical outcome and 

the mechanism of overexpression was not through amplification of the gene(Courjal et al 

1996, Dhar et al 1999, Hung et al 1996, Masciullo et al 1997). High copy number 

amplification of cdk2 was found in only 4-6% of cases(Cancer Genome Atlas Research 

Network, 2011, Marone et al 1998). Genomic loss of the region containing the retinoblastoma 

(Rb) gene and loss of heterozygosity of Rb has been described, however loss of expression 

occurred in few cases leading the investigators to conclude that Rb did not play a significant 

role in high-grade ovarian carcinomas(Dodson et al 1994, Kim et al 1994, Li et al 1991).  

Recently, two families of mitotic kinases have been implicated in ovarian cancer: the Polo-

like kinases and Aurora kinases. Overexpression of both has been associated with a 

shortened survival time in patients with ovarian cancer and these targets have been the 

focus of recent clinical trials, however only the Aurora A gene was found to be amplified (in 

15-27% of ovarian carcinomas)(Chen et al 2009, Mendiola et al 2009, Tanner et al 2000, 

Weichert et al 2004). Level of amplification of the Aurora A gene has been inconsistent with 

regards to tumor characteristics (histology or grade), level of expression, or patient outcome, 

with reports of greater association with early stage and low grade ovarian cancers as well as 

an association with poor prognosis(Fu et al 2006).  

Many cell cycle associated kinase inhibitors are in early phase development (reviewed in 

(De Falco and De Luca 2010)), but few have been tested in ovarian cancer (Table 6). 

Interestingly, a mitotic regulatory inhibitor that affects the polo-like kinases (among 

others), had clinical benefit for a chemorefractory ovarian cancer patient for 24 

months(Jimeno et al 2008). Preliminary results with MLN8237, an Aurora A kinase 

inhibitor, in a phase I trial showed one long term response (>1.5 yrs) in a patient with 

platinum refractory ovarian cancer(Dees et al 2010). A phase II study of ENMD-2076, an 

oral small molecule kinase inhibitor with activity against aurora kinases among other 
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kinases, showed modest activity in platinum-resistant ovarian cancer(Matulonis et al 

2011). Inhibition of aurora kinase has been reported to sensitize cells to treatment with 

paclitaxel(Hata et al 2005, Scharer et al 2008) and the combination of paclitaxel and 

MLN8237 is being evaluated in a phase II randomized clinical trial. Results from these 

clinical trials are eagerly awaited. 

7. Chromatin remodeling and transcription 

Epigenetic modifications, such as DNA methylation and histone modifications, interact to 
remodel chromatin and result in the dysregulation of genes and pathways leading to 
uncontrolled cell growth. These mechanisms are primarily under the regulation of DNA 
methyltransferases (DNMTs) and histone decetylases (HDACs) and therapeutic agents 
inhibiting these epigenetic modifiers are currently in clinical use for the treatment of 
certain hematologic malignancies and are being evaluated in clinical trials for ovarian 
cancer (reviewed in Matei and Nephew(Matei and Nephew 2010)). Other chromatin 
remodeling proteins are emerging as potentially important in the pathogenesis of ovarian 
cancer and may be useful therapeutic targets. Amplification of the chromosome 11q13.5 
locus is frequently detected in human cancers, including ovarian carcinomas. This region 
was amplified in 13-16% of high grade ovarian carcinomas but not in any of the normal 
ovarian tissues, benign ovarian tumors, or low grade ovarian carcinomas 
analyzed(Nakayama et al 2007, Shih Ie et al 2005). The only gene within the amplicon that 
showed consistent overexpression was the gene encoding HBXAP/Rsf-1, a subunit of the 
RSF chromatin assembly complex. Patients whose tumors harbored amplification of Rsf-1 
had a shorter overall survival compared with those without amplification(Nakayama et al 
2007, Sheu et al 2010, Shih Ie et al 2005). Rsf-1 amplification (and ensuing overexpression) 
was identified as an independent prognostic factor based on multivariate analysis and 
this may be secondary to its ability to confer resistance to treatment with paclitaxel(Choi 
et al 2009). Elevated levels of Rsf-1 was shown to induce chromosomal instability, and in 
non-transformed cells, induced growth arrest and activated DNA damage response 
pathways. However in the presence of an inactivated p53, long-term overexpression of 
Rsf-1 stimulated cellular proliferation. While Rsf-1 is only amplified in a subset of high-
grade ovarian serous carcinomas, inactivation or disruption of the RSF complex may be a 
useful therapeutic approach for tumors that depend on this protein for a proliferative 
advantage.  
Other genes, such as MYC, NACC1 (which encodes Nac1), EMSY, MECOM, and PAK1 

involved in chromatin remodeling and transcription, have also been shown to be amplified 

in ovarian carcinomas(Dimova et al 2009, Schraml et al 2003b, Shih Ie et al 2011). The 

expression of some, such as Nac1, has been associated with poor progression-free survival 

and paclitaxel resistance(Davidson et al 2007, Jinawath et al 2009, Nakayama et al 2006a). 

For others, such as MYC and EMSY, the significance of the amplification in high grade 

serous carcinoma is unclear and they may not be the oncogenic driver within the 

amplicon(Shih Ie et al 2005). Others are likely only relevant for a subtype, as in ARID-1A in 

clear cell carcinomas. A number of amplified genes identified by the TCGA and others have 

potential drugs currently in preclinical development or early phase clinical trials. However 

further work is necessary to determine whether any of these are prognostic markers or 

predictive of response to therapy. 
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8. Conclusion 

Despite the identification of several amplified pathways, the results of the clinical trials of 

therapeutic agents targeting these pathways in ovarian cancer have been disappointing. 

There are several potential reasons for the poor response rates. The majority of studies of 

new targeted agents enroll patients with advanced disease often after several lines of 

standard cytotoxic therapy have failed. Even when used in combination with cytotoxic 

chemotherapy, these agents may not be able to overcome the mechanisms of resistance that 

the tumor has developed. Of interest would be evaluating these drugs in low-volume or 

early (marker only) recurrent disease or in combination with initial chemotherapy.  Another 

strategy would be to test these typically cytostatic agents as maintenance therapy in patients 

who are in a complete clinical remission. 

Resistance to targeted agents is mediated through a variety of mechanisms including 
mutation of the target, constitutive activation of downstream effectors, or activation of 
compensatory pathways. Defining the mechanisms of constitutive or acquired resistance 
requires thorough investigation in cellular and animal models. Emphasis should be placed 
on characterizing resistance mechanisms and developing better predictive markers to 
identify subsets of patients who are more likely to respond to therapy.  
Targeting codependent pathways, rather than the amplified genes directly, may be another 
approach to cancer treatment. Cancer cells typically co-opt metabolic and stress response 
pathways becoming functionally reliant on them for continued proliferation while normal 
cells are not dependent on their function. Raj et al. recently used this strategy to 
preferentially eliminate cancer cells by targeting the oxidative stress response pathway(Raj 
et al 2011). This approach is similar to the synthetic lethality seen with PARP inhibitors in 
tumors with BRCA mutations. 
In summary, while at present there is not a clear role for targeting the amplified pathways in 
ovarian cancer outside of a clinical trial, elucidating strategies of tumor resistance and 
compensatory mechanisms may allow for the development of novel therapeutic agents or 
the rational combination of existing agents to improve the prognosis of patients with 
ovarian cancer. 
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