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1. Introduction

Platinum-based drugs such as cisplatin (cis-diammine-dichloro-platinum, also commonly
known as CDDP) have dominated the drug therapy of ovarian cancer during the past three
decades [1]. Cisplatin interacts with DNA to form intrastrand crosslink adducts, and its mo‐
lecular mechanism involves regulation of p53 and the mitogen-activated protein kinase
(MAPK) signaling pathway [2]. The phosphatidylinositol-3-kinase (PI3K)/Akt signaling
pathway is crucial for regulation of survival and for progression and chemoresistance in
ovarian cancer, leading to the development of new chemotherapeutic inhibitors targeting
the PI3K/Akt pathway and the downstream serine/threonine protein kinase mTOR. [3]. In‐
hibition of PI3K pathway signaling using PI3K or mTOR inhibitors has been shown to sensi‐
tize ovarian cancer cell lines to the apoptosis-inducing effect of platinum compounds [4, 5].
In addition, activation of the PI3K/Akt/mTOR pathway in ovarian cancer cell lines contrib‐
utes to cisplatin resistance [6]. The anti-apoptotic, pro-angiogenic effects of PI3K/Akt/mTOR
may be mediated, at least in part, through a downstream signaling pathway involving en‐
dogenous endothelial-form nitric oxide synthase (eNOS, also called NOS3), and subsequent‐
ly soluble guanylyl cyclase (sGC) and protein kinase G (PKG). Studies have shown that Akt
activates eNOS by phosphorylating human eNOS at Ser1177 (equivalent to bovine eNOS at
Ser1179), leading to an increase in nitric oxide (NO) production in endothelial cells [7, 8]. In
the cases of vascular endothelial growth factor (VEGF) [9, 10], sphingosine 1-phosphate [11,
12], and estrogen [13, 14], there are vast evidences suggesting PI3K-activation of Akt is re‐
sponsible for regulating the phosphorylation and activation of eNOS. In bovine aortic endo‐
thelial cells, eNOS co-immunoprecipitates with Akt, indicating that the two enzymes
associate in vivo, and Akt directly activates eNOS, increasing eNOS activity by 15-20 fold
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[15]. This signaling pathway has been shown to play an essential role in promoting angio‐
genesis or tumor vascularization [16]. In a very recent study, microgravity stimulated tube
formation and migration in human umbilical vein endothelial cells (HUVEC), and the proc‐
ess was mediated through the PI3K-Akt-eNOS signal pathway [17].

Our early studies of the NO/cyclic GMP (cGMP)/PKG signaling pathway have identified
PKG as a key mediator of  vasodilation and anti-hypertensive effects  induced by NO as
well as atrial natriuretic peptide (ANP) [18-21].  Recent studies from our laboratory have
shown that  the  PKG-Iα splice  variant  of  PKG,  at  basal  or  moderately  elevated activity,
plays an important cytoprotective role in preventing spontaneous apoptosis and promot‐
ing  cell  proliferation  in  many  types  of  mammalian  cells,  including  neural  cells  [22-27],
human  ovarian  cancer  cells  [28-30],  primary  murine  vascular  smooth  muscle  cells  [31]
and murine bone marrow mesenchymal (stromal) stem cells [32]. Evidence from our lab‐
oratory suggested that  basal  activation of  PKG-Iα leads to increased attachment of  cells
to the extracellular matrix and increased cell  migration,  shown in bone marrow-derived
mesenchymal  (stromal)  stem cells  [32].  We have  identified  certain  intracellular  proteins
that are directly phosphorylated and functionally regulated by PKG-Iα,  including 1)  the
apoptosis-regulating protein BAD [26],  2)  vasodilator-stimulated phosphoprotein (VASP)
[28, 31, 32], 3) the oncogenic tyrosine kinase c-Src [28, 33] and 4) the transcription factor
cAMP responsive element binding protein (CREB) [24,  34],  which may contribute to the
exaggerated proliferation, enhanced chemoresistance and increased cell migration and in‐
vasion  in  ovarian  cancer  cells  (Figure  1).  Our  recent  studies  have  shown that  cisplatin
regulates the endogenous expression of nitric oxide synthases (NOSs) in human ovarian
cancer  cells,  upregulating  inducible  nitric  oxide  synthase  (iNOS,  also  called  NOS2)  ex‐
pression but dramatically downregulating the expression of eNOS and neural-form nitric
oxide synthase (nNOS, also called NOS1), which is involved in determining cisplatin re‐
sistance in ovarian cancer cells [30].  Our studies show that the chemoresistance/cytopro‐
tective  effects  of  endogenous  eNOS  involve  hyperactivation  of  PKG-Iα  in  the  ovarian
cancer cells [28].

Studies from our laboratory suggest that PKG-Iα promotes proliferation in ovarian cancer
cells, which involves the enhancement of the tyrosine kinase activity of c-Src [28], an onco‐
genic protein often overexpressed and/or hyperactivated in many types of cancer cells. We
showed that PKG-Iα plays a key role in activating c-Src and promoting cell proliferation, us‐
ing the short interfering RNA (siRNA) or RNA interference (RNAi) technique, to knock‐
down the expression of PKG-Iα in ovarian cancer cells [28]. We found that epidermal
growth factor (EGF)-induced activation of c-Src tyrosine kinase activity causes tyrosine
phosphorylation of PKG-Iα, increasing the serine/threonine kinase activity of PKG-Iα and
its growth-promoting effects in ovarian cancer cells [28]. Later, we have found that PKG-Iα
directly phosphorylates c-Src at Ser17, which enhances the tyrosine kinase activity of c-Src in
both in vitro and intact-cell experiments [33]. This novel interaction between PKG-Iα and c-
Src causes reciprocal phosphorylation, which means PKG-Iα and c-Src phosphorylate each
other, potentially setting up an “oncogenic reinforcement” resulting in exaggerated DNA
synthesis and cell proliferation (Figure 1).
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Figure 1. Model of the biological role of PKG-Iα in ovarian cancer cells illustrating the effects of growth factors (e.g.
EGF), which stimulates both the PI3K/Akt pathway, enhancing eNOS activity and low-level NO generation and the ac‐
tivation of c-Src. The low, physiological levels of NO activate sGC, elevating cGMP levels that enhance the activation of
PKG-Iα. PKG-Iα is further activated (hyperactivated) by the combined effects of cGMP allosteric stimulation and the
tyrosine phosphorylation by c-Src. PKG-Iα phosphorylates several downstream proteins, including c-Src, Bad, CREB and
VASP, leading to enhanced cell proliferation and cytoprotection, contributing to chemoresistance in ovarian cancer
cells and increased cell migration and invasion.

2. Phosphorylation of the vasodilator-stimulated phosphoprotein (VASP)
at Ser239 as a useful indicator of endogeneous PKG kinase activity

Vasodilator-stimulated phosphoprotein (VASP) was first described in 1987 as a protein
phosphorylated in platelets in response to vasodilators such as sodium nitroprusside, nitro‐
glycerin and various prostaglandins that elevate cAMP and cGMP [35]. VASP belongs to the
Ena/VASP family which includes VASP, Mena (mammalian enabled) and EVL (Ena VASP-
like). The Ena/VASP family proteins function as anti-capping proteins [36, 37], regulating
the actin cytoskeleton dynamics [38-42] and are therefore important for actin-based adhe‐
sion [43, 44], migration [45-47] and cell–cell interaction [48-50]. Many studies from others
have suggested the involvement of VASP in invasion, angiogenesis and tumorigenesis. In an
in vitro model of capillary morphogenesis using human umbilical vein endothelial cells
(HUVECs) in three-dimensional collagen gels, the differentiated endothelial cells showed 2
to 3-fold increase in migration with increased VASP mRNA and protein expression [51]. A
study on human placenta development showed that VASP may participate in vasculogene‐
sis and endothelial sprouting during placental vasculogenesis, and VASP expression was
stimulated by vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) [52].
NIH-3T3 fibroblast deficient in VASP showed loss of contact inhibition, and continued cell
division past confluence, while overproduction of VASP by transfection in NIH-3T3 fibro‐

Protein Kinase G-Iα Hyperactivation and VASP Phosphorylation in Promoting Ovarian Cancer Cell…
http://dx.doi.org/10.5772/53468

253



blasts resulted in neoplastic transformation, suggesting a role of VASP in tumorigenesis
and/or cancer progression [53]. In human osteocarcinoma specimans, higher VASP expres‐
sion was associated with metastasis and increased migration, and VASP expression was
regulated by Rac1 [54]. In lung adenocarcinomas tissues, VASP expression was increased
compared to normal lung tissues, and was significantly increased with more advanced tu‐
mor stage [55]. Elevated VASP expression was also reported in human breast cancer tissues
[56] and was implicated on invasion and migration in breast cancer cells involving the Rac1
pathway [57]. Moreover, it was shown that in mice lacking VASP, melanoma growth was
greatly impaired [58]. In gastric cancer cells, VASP was upregulated by epidermal growth
factor (EGF) and promoted migration and invasion. Using microRNA (miRNA) expression
profiling of the paired normal/tumor gastric tissues, the same group identified miR-610 as a
novel miRNA regulated by EGF that targets VASP in gastric cancer cells [59].

VASP has been reported to be phosphorylated by cAMP-dependent protein kinase (PKA) and
cGMP-dependent protein kinase (PKG) [35, 60]. VASP was found to be primarily present as a
46 kDa membrane-associated protein in its dephosphorylated form in platelets, and VASP is
converted to an apparent 50 kDa phosphoprotein upon phosphorylation, as observed on West‐
ern blot [61, 62]. VASP contains three phosphorylation sites, Ser157, Ser239 and Thr274, all of
which can be phosphorylated by either PKA or PKG [63]. Ser157 is the preferred site of phos‐
phorylation for PKA, Ser239 is the preferred site for PKG, and Ser157 was the site responsible
for the phosphorylation-induced mobility shift of VASP on Western blots [63]. Because it was
well-characterized that VASP at Ser239 is the preferred phosphorylation site for PKG in vitro
and in mammalian cells, VASP phosphorylation at Ser239 has been proposed to be a useful in‐
dicator of endogenous PKG kinase activity [61, 63, 64]. In fact, VASP at Ser239 was shown to be
a functional biomarker of endothelial nitric oxide/cyclic GMP signaling [65], and could be used
to indicate defective nitric oxide/cGMP signaling and endothelial dysfunction [66]. In colon
cancer cells, VASP Ser239 phosphorylation was used as a biomarker for the action of the anti-
cancer drug Exisulind, an inhibitor of type-5 phosphodiesterase (PDE-5) that elevates cGMP
and stimulates PKG activation, and that constitutively activated mutants of PKG resulted in di‐
rect in vivo phosphorylation of VASP Ser239 [67].

We had shown that the endogenous NO/cGMP signaling pathway in ovarian cancer cells caus‐
es a constitutive downregulation of p53 protein expression, which likely contributes to the che‐
moresistance and exaggerated cell proliferation in these cells [29].  Furthermore, we have
previously identified that PKG-Iα is the predominant isoform of PKG in both OV2008 (cispla‐
tin-sensitive, wild-type p53) and A2780cp (cisplatin-resistant, mutated p53) ovarian cancer
cells as determined by Western blot analysis as well as using the new, ultrasensitive Nano‐
Pro100 capillary electrophoresis-based nano-fluidic protein analysis system [28, 68, 69]. Our
more recent data now show that the chemoresistance and exaggerated cell proliferation are
likely mediated by the constitutive hyperactivation of PKG-Iα (reflected in the high levels of
VASP phosphorylation at Ser239) in ovarian cancer cells, and that the PKG-Iα is already acti‐
vated to approximately 90% of maximal activity, described in our previous book chapter [68].
In our recent study, epidermal growth factor (EGF)-induced activation of Src family kinase
(SFK) was found to tyrosine-phosphorylate PKG-Iα increasing its serine/threonine kinase ac‐
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tivity in ovarian cancer cells. The EGF-stimulated increase in PKG-Iα kinase activity (indicated
by VASP Ser239 phosphorylation) was blocked by both SKI-1 and SU6656 (SFK inhibitors). Us‐
ing the specific PKG-Iα kinase inhibitor DT-2 and small interfering RNA (siRNA) PKG-Iα gene
knockdown, we showed that the inhibition of endogenous PKG-Iα kinase activity reduced
VASP Ser239 phosphorylation and DNA synthesis rate in ovarian cancer cells [28]. New data
from our laboratory show that the knockdown of PKG-Iα expression inhibits the EGF-stimu‐
lated increases in VASP Ser239 phosphorylation and Src/SFK autophosphorylation at the
equivalent of Tyr416 (the phosphorylation site for activating the tyrosine kinase activity) in
A2780cp (cisplatin-resistant, mutated p53) ovarian cancer cells (see Figure 2 below).

Figure 2. A, EGF (10 ng/mL) elevated VASP Ser239 phosphorylation and Src Tyr416 phosphorylation in A2780cp cells,
assessed by Western blot analysis. Gene knockdown of PKG-Iα by PKG-Iα-siRNA partially inhibited the basal VASP
phosphorylation and Src/SFK autophosphorylation and completely inhibited the EGF-stimulated increases in VASP
phosphorylation and Src/SFK autophosphorylation. The Western blot shown is representative of four experiments. B,
Quantification of the relative levels of VASP and Src phosphorylation from Western blot. Bar graphs show mean ± SEM
from four independent experiments. *, P< 0.05, compared with no EGF control; #, P<0.05; ##, P<0.01; ###, P < 0.001,
compared with negative control.

3. Role of PKG in invasion/migration in A2780cp ovarian cancer cells

The role of NO/cGMP/PKG pathway in invasion/migration in cancer cells is largely unknown.
However, a significant number of reports have shown that the NO/cGMP/PKG pathway plays a
key role in endothelial cell migration and angiogenesis, involving the downstream activation of
the mitogen-activated protein kinase (MAPK) family. It has been shown that NO promotes endo‐
thelial cell migration and neovascularization by activating the PI3K/Akt signaling pathway in a
PKG-dependent manner [70]. Activation of the NO/cGMP/PKG pathway also promoted endo‐
thelial cell angiogenesis and increased extracellular signal regulated kinase 1/2 (ERK1/2) and p38
phosphorylation [71, 72], which were blocked by soluble guanylyl cyclase (sGC) inhibitor, 1H-
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[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), or PKG inhibitor DT-3 [73-75]. Moreover, the
mitogenic effect of vascular endothelial growth factor (VEGF) on endothelial cells appears to be
mediated by endogenous NO (from eNOS) and cGMP, which results in PKG activation and PKG-
mediated downstream stimulation of MEK and ERK [76, 77]. Although it has not yet been report‐
ed which isoform of PKG is involved in the multiple pro-angiogenesis responses of endothelial
cells, our recent studies suggest that endothelial cells express predominantly the PKG-Iα isoform
(unpublished observations by J.C. Wong and R.R. Fiscus), which likely mediates the stimulation
of downstream growth-promoting and pro-angiogenesis pathways in endothelial cells.

Interestingly, in colon cancer cells, recent studies showed that activation of PKG inhibited cell mi‐
gration [78], and cGMP-dependent VASP phosphorylation suppressed the number and length
of locomotory (filopodia) and invasive (invadopodia) actin-based organelles [79], suggesting a
role of VASP Ser239 in invasion and migration. Our studies suggest that the opposite roles of PKG
in regulating apoptosis, proliferation and migration reported by others are likely dependent on
cell type, growth conditions (presence of different growth factors), as well as the differential ex‐
pression of PKG-Iα and PKG-Iβ isoforms. The two splice variants of PKG-I, PKG-Iα and PKG-Iβ,
are activated by different concentration ranges of NO and are localized to different subcellular lo‐
cations within cells. Therefore, the two PKG-I isoforms can phosphorylate different sets of down‐
stream target proteins and can mediate completely different biological responses. The very
different biological roles of the two PKG-I isoforms are reviewed in further detail elsewhere in an‐
other recent book chapter from our laboratory [68]. For example, PKG-Iα (Kact = 0.1 µM by cGMP
allosteric activation) is activated at low, physiological levels of NO, whereas PKG-Iβ is activated
at higher, pathological levels of NO and requires at least 10-times higher levels of cGMP for acti‐
vation (Kact = 1 µM) [68, 72, 80, 81].

In our hypothesis, the PKG-Iα and PKG-Iβ isoforms mediate opposite biological effects on cell
proliferation and apoptosis, based on observations in two types of cells that express one isoform
of PKG-I or the other. Our studies have shown that human ovarian cancer cells express predomi‐
nantly the PKG-Iα isoform, and that the activation of this kinase by endogenous low-level NO
(0.01 – 1 nM), generated by endogenous eNOS and nNOS, would selectively activate the PKG-Iα
isoform within ovarian cancer cells from our laboratory, promoting DNA synthesis/cell prolifer‐
ation and suppressing apoptosis, thus contributing to chemoresistance [28, 30, 68]. Studies in our
laboratory, using both normal and malignant cells, including vascular smooth muscle cells, bone
marrow-derived mesenchymal (stromal) stem cells and neuroblastoma cells, have suggested
that a major role of the low-level-NO/cGMP/PKG-Iα signaling pathway is to protect these cells
against the toxic/pro-apoptotic effects of high-level NO, as might occur during inflammation and
exposure of cells to pro-inflammatory cytokines [22, 24, 25, 31, 32]. In contrast, based in part on
published data from the laboratories of Weinstein and Thompson, it appears that when PKG-Iβ is
activated by the higher levels of NO, the growth-inhibitory and pro-apoptotic effects of PKG-Iβ
predominate over the growth-stimulatory and anti-apoptotic effects mediated by PKG-Iα. Their
laboratories have shown that in colon cancer cells, PKG-Iβ is the predominant PKG-I isoform ex‐
pressed. Upon activation, PKG-Iβ phosphorylates two downstream target proteins, β-catenin
and MEKK1, resulting in inhibition of cell proliferation and induction of apoptosis [78, 82, 83].
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As stated above, we have previously determined that PKG-Iα is the predominant isoform in
A2780cp ovarian cancer cells [30, 68, 69]. To study whether PKG-Iα plays a role in cell mi‐
gration/invasion in ovarian cancer cells, we performed experiments using small interfering
RNA (siRNA) gene knockdown against PKG-Iα in transwell migration studies. Figure 3
shows that siRNA gene knockdown of PKG-Iα dramatically decreases no EGF as well as
EGF-stimulated cell migration (as reflected by the quantity of migrated cells at the bottom of
the transwell, stained with crystal violet) in A2780cp cisplatin-resistant ovarian cancer cells.
These data confirm the role of endogenous PKG-Iα activity, potentially via VASP Ser239
phosphorylation, in promoting cell migration/invasion in ovarian cancer.

Figure 3. PKG-Iα siRNA gene knockdown in A2780cp cells decreased both basal and EGF-stimulated cell migration as‐
sessed by in vitro cell migration (invasion) assay. Migration of cells was assessed using transwells (Corning) with 8 µM pore
polycarbonated inserts, coated with growth factor-reduced matrigel (BD Bioscience). The upper chamber contained 4 x
104 cells and the lower chamber contained 0.6 ml of complete medium with or without EGF. Migration through the mem‐
brane was determined after 24 h of incubation at 37°C. Cells remaining on the topside of the transwell membrane were re‐
moved using a cotton swab, and cells migrated to bottom were stained with 0.5% crystal violet.
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4. Inhibition of the PKG-Iα signaling pathway enhances sensitivity of
ovarian cancer cells to cisplatin-induced apoptosis – Potential
involvement of cAMP-response-element-binding protein (CREB) and
inhibitor of apoptosis proteins (IAPs)

Platinum-based drugs such as cisplatin have dominated the drug therapy of ovarian cancer
during the past three decades [1]. Cisplatin interacts with DNA to form intrastrand crosslink
adducts, and its molecular mechanism involves regulation of p53 and the mitogen-activated
protein kinase (MAPK) signaling pathway [2]. It has been shown that inhibition of ERK1/2
activation with the mitogen-activated protein kinase/ERK kinase 1 (MEK1) inhibitor
PD98059 resulted in decreased p53 protein half-life and diminished accumulation of p53
protein during exposure to cisplatin [84]. Our data have shown that human ovarian cancer
cells express all of the key components of the NO/cGMP/PKG signaling pathway, including
all three isoforms of NOSs, thus providing an endogenous source of NO [30]. Furthermore,
ovarian cancer cells continuously produce NO at low physiological levels, activating the
heme-dependent soluble guanylyl cyclase (sGC) [29], elevating cGMP levels sufficiently
enough to cause continuous high-level activation of PKG [28]. Our data suggested that such
basal sGC/cGMP activity regulates p53 expression, and promotes cell survival in part
through regulation of caspase-3 [29] (now thought to be mediated by downstream hyperac‐
tivation of PKG-Iα).

Cisplatin is also widely employed in chemotherapy on treating solid tumors such as lung
cancer. Recently, we showed that, in NCI-H460 and A549 non-small cell lung cancer
(NSCLC) cells, PKG-Iα phosphorylates cAMP-response-element-binding protein (CREB) at
Ser133 [34]. CREB was first shown to be phosphorylated by PKG in vitro by Colbran et al.,
which showed that PKG effectively phosphorylates CREB at Ser133, although at a slower
rate compared to PKA [85]. Interestingly, NO was shown to regulate the c-fos promoter in‐
volving soluble guanylyl cyclase (sGC) and PKG [86] in a CREB-dependent manner [87].
They also showed that transfection of PKG in baby hamster kidney (BHK) cells activated the
c-fos promoter [88], which required nuclear translocation of PKG and phosphorylation of
CREB at Ser133 by PKG [87, 89, 90]. In our recent study, inhibition of the sGC/PKG-Iα sig‐
naling pathway by ODQ (sGC inhibitor), DT-2 (PKG-Iα kinase inhibitor) and PKG-Iα-siR‐
NA gene knockdown showed that PKG-Iα kinase activity is necessary for maintaining
higher levels of CREB phosphorylation at Ser133 and the protein expression of certain inhib‐
itor of apoptosis proteins (IAPs), specifically c-IAP1, livin and survivin, as well as the anti-
apoptotic Bcl-2 family member Mcl-1, preventing spontaneous apoptosis and promoting
colony formation [34]. In the same study, we discovered that DT-2 and cisplatin have a syn‐
ergistic effect on the induction of apoptosis, with DT-2 dramatically enhancing the pro-
apoptotic effects of cisplatin in A549 cells (a NSCLC cell line that requires higher levels of
cisplatin to induce apoptosis). We also showed that prior activation of PKG-Iα by 8-bromo-
cGMP (8-Br-GMP), a cell-permeable cGMP analog that directly activates PKG [22, 24], has
cytoprotective effects against cisplatin. PKG-Iα activity stimulated by 8-Br-cGMP was re‐
flected by increased VASP phosphorylation at Ser239. Pretreatment of A549 cells with 8-Br-
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cGMP caused significant protection against cisplatin-induced apoptosis, even at higher
concentrations of cisplatin. Interestingly, when the same treatments were used on PKG-Iα
knockdown cells, the cytoprotective effects of 8-Br-cGMP against cisplatin-induced apopto‐
sis was completely abolished, confirming that the cytoprotection (chemoresistance) was
mediated by PKG-Iα [34].

To investigate whether such synergism occurs in ovarian cancer cells, we tested the com‐
bined treatment of the specific PKG-Iα kinase inhibitor, DT-2, and cisplatin in the A2780cp
cisplatin-resistant ovarian cancer cell line. Our new preliminary data presented in this book
chapter (illustrated in Figure 4) verified the synergistic effects of DT-2 and cisplatin. Figure 4
shows the level of apoptosis in A2780cp cells after a 24-hr co-treatment of DT-2 (5 or 10 µM)
and cisplatin (2 µM). The Cell Death Detection ELISAPLUS assay (Roche Applied Science),
based on quantitative sandwich-enzyme-immunoassay-principle with monoclonal antibod‐
ies directed against DNA and histones, were used to quantify apoptotic fragments. DT-2 (5
µM) or cisplatin (2 µM) alone did not cause significant increase in apoptosis. However, com‐
bined treatment of DT-2 (5 or 10 µM) and cisplatin (2 µM) significantly (###P<0.001) in‐
creased apoptosis, showing a synergistic effect.

Figure 4. Synergistic effect of DT-2 with cisplatin in A2780cp human ovarian cancer cells. Combined treatment of
DT-2 (5 or 10 µM) and cisplatin (2 µM) significantly (###P<0.001) increased apoptosis, compared to cisplatin (2 µM)
alone. **P<0.01, ***P<0.001, compared to no DT-2 control. Statistical analysis was performed by one-way ANOVA, fol‐
lowed by Newman-Keuls Multiple Comparison Test using GraphPad (PRISM software). Results were expressed as the
mean ± SEM of at least six different samples.

Protein Kinase G-Iα Hyperactivation and VASP Phosphorylation in Promoting Ovarian Cancer Cell…
http://dx.doi.org/10.5772/53468

259



Based on our study of the roles of sGC/PKG-Iα/CREB/IAPs in cisplatin resistant non-small
lung cancer cells, we have proposed the anti-apoptotic role of PKG-Iα observed in A2780cp
cells is likely mediated through PKG-Iα downstream phosphorylation of CREB at Ser133
and activation of certain IAPs. IAPs have been shown to regulate apoptosis and tumorigene‐
sis [91]. Although how CREB regulates apoptosis through IAPs is largely unknown, it was
shown that CREB phosphorylation is a key event in the induction of certain IAPs, c-IAP2
and livin, via multiple protein kinases, PKA, ERK1/2 and p38 MAPK, in colon cancer cells
[92, 93]. In ovarian cancer cells, X-linked inhibitor of apoptosis protein (XIAP) has been
shown to control ovarian tumor growth and regulate Akt activity and caspase-3 in cisplatin-
induced apoptosis [94-96], and the ability of cisplatin to down-regulate XIAP may be an im‐
portant determinant of chemosensitivity [97]. Down-regulation of XIAP sensitized cells to
cisplatin in the presence of wild-type p53, and both XIAP and Akt modulated cisplatin sen‐
sitivity individually but that XIAP required Akt for its full function [98]. Inhibition of
PI3K/Akt/mTOR signaling has been shown to activate apoptosis and inhibit migration and
invasion in ovarian cancer cells [3, 4, 99-104]. Furthermore, inhibition of PI3K pathway sig‐
naling using PI3K or mTOR inhibitors has been shown to sensitize ovarian cancer cell lines
to induction of apoptosis by platinum compounds [4, 5]. Several recent evidences have sug‐
gested that such effects involve the matrix-metalloproteinases (MMPs) [105-107], which are
zinc-dependent endopeptidases capable of degradation of extracellular matrix proteins.

5. Overall model of NO/cGMP/PKG-Iα signaling pathway in ovarian
cancer

Figure 5 illustrates our overall model showing the involvement of the NO/cGMP/PKG-Iα
pathway in promoting cell proliferation and suppressing apoptosis in human ovarian cancer
cells, which would contribute to enhanced tumor growth and chemoresistance. Our early
studies of the NO/cGMP/PKG pathway have identified PKG as a key mediator of vasodila‐
tion and anti-hypertensive effects induced by NO as well as atrial natriuretic peptide (ANP)
[18-21]. Recent studies from our laboratory have shown that basal or moderately elevated
PKG-Iα activity plays a cytoprotective role in preventing spontaneous apoptosis and pro‐
moting cell proliferation in many types of mammalian cells, including neural cells [22-27],
human ovarian cancer cells [28-30], primary murine vascular smooth muscle cells [31] and
murine bone marrow stromal cells [32]. We found that murine bone marrow-derived mesen‐
chymal (stromal) stem cells endogenously produced ANP and that basal NO/cGMP/PKG-Iα
activity and autocrine ANP/cGMP/PKG-Iα activity are necessary for preserving cell survival
and promoting cell proliferation and migration in the OP9 bone marrow stromal cell line
[32]. Recently, we have identified certain intracellular proteins phosphorylated by PKG-Iα,
including BAD [26], vasodilator-stimulated phosphoprotein (VASP) [28, 31, 32], c-Src [28]
and cAMP responsive element binding protein (CREB) [34]. We have recently shown that
PKG-Iα directly phosphorylates BAD at Ser155, using in vitro experiments, and have further
shown that a large part of the Ser155 phosphorylation of BAD within neuroblastoma cells is
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dependent on endogenous PKG-Iα kinase activity, contributing to decreased caspase-3 ac‐
tivity and inhibition of apoptosis [26].

Figure 5. Cellular model of the involvement of the NO/cGMP/PKG-Iα signaling pathway in promoting chemoresist‐
ance, tumor growth and angiogenesis in ovarian cancer. A special role of VASP phosphorylation at Ser239 may con‐
tribute to enhanced ovarian cancer cell migration and invasion.

As illustrated in the model of Figure 5, we have also identified an important role of c-Src/PKG-
Iα interaction in promoting DNA synthesis and cell proliferation in human ovarian cancer
cells. Previous studies have shown that PKG-I binds Raf-1 and promotes downstream activa‐
tion of MEK and ERK1/2 in endothelial cells [76]. In ovarian cancer cells, we proposed that
PKG-Iα binds to Raf-1 at the internal surface of the plasma membrane, bringing PKG-Iα in
close proximity to one of its downstream target proteins c-Src. This leads to downstream acti‐
vation of the Raf-1/MEK/ERK signaling pathway, promoting cell proliferation. We found that
PKG-Iα directly phosphorylates c-Src at Ser17, which enhances the tyrosine kinase activity of c-
Src in both in vitro and intact-cell experiments [33]. Our recent studies have shown a clear role
of the PKG-Iα-mediated phosphorylation of c-Src at Ser17 in preventing apoptosis and pro‐
moting proliferation, attachment and migration in the mesothelioma and NSCLC cells. It is
very likely that a similar PKG-Iα catalyzed phosphorylation of c-Src at Ser17 occurs in human
ovarian cancer cells, which can explain the dependence of the c-Src activation by EGF on the
presence of PKG-Iα [28]. Epidermal growth factor (EGF)-induced activation of c-Src tyrosine
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kinase activity was found to cause tyrosine phosphorylation of PKG-Iα, increasing the serine/
threonine kinase activity of PKG-Iα (indicated by phosphorylation of the PKG substrate VASP
at Ser239) and its growth-promoting effects in ovarian cancer cells [28]. In human ovarian can‐
cer cells, the c-Src-mediated tyrosine-phosphorylation of the EGF receptor was found to be
highly dependent on PKG-Iα kinase activity [28].

We hypothesized in ovarian cancer cells, as reported in the lung cancer cells in our recent
study [34], that PKG-Iα phosphorylated CREB at Ser133, and the cGMP/PKG-Iα signaling
pathway maintains the expression of certain IAPs such as c-IAP1, livin and survivin as well
as the anti-apoptotic Bcl-2 family member Mcl-1, leading to decreased activity of caspase-3
and promoting cell survival. In ovarian cancer cells where PKG-Iα is hyperactivated, in‐
creased downstream phosphorylation of CREB at Ser133 and increased IAPs expression
may explain the development of resistance to cisplatin-induced apoptosis. Moreover, PKG-
Iα siRNA gene knockdown also decreased both basal and EGF-stimulated cell migration in
A2780cp ovarian cancer cells, as shown in Figure 3.

VASP phosphorylation at Ser239 has been shown to be a useful indicator of endogenous
PKG kinase activity, both in our recent studies [28, 31, 32] and reports from others [61, 63,
64]. In the current study in this book chapter, we show that siRNA gene knockdown of
PKG-Iα expression inhibited EGF-stimulated increases in VASP Ser239 phosphorylation and
Src/SFK autophosphorylation in A2780cp (cisplatin-resistant, mutated p53) ovarian cancer
cells. Therefore, VASP Ser239 phosphorylation may be a useful biomarker in ovarian cancer
cells, and hyperactivation of the unique NO/sGC/PKG-Iα signaling pathway may be a novel
therapeutic target for regulation of cancer cell migration/invasion.

Also shown in the model of Figure 5 is the role of endothelial cells, which would provide an
additional source of endogenous NO within the growing tumor, potentially contributing to
the “angiogenic switch”, i.e. the increased tumor growth that occurs after the invasion of en‐
dothelial cells into the tumor. Endothelial cells also play another important role in tumor
growth by providing new blood vessels needed for the vascularization and blood perfusion
of the growing tumor. In endothelial cells, heat shock protein 90 (HSP90) and Akt activate
eNOS involving the formation of a HSP90-Akt-Calmodulin (CaM)-eNOS complex, leading
to an increase in NO production [108-111]. Interestingly, HSP90 activation of eNOS can be
Ca2+-dependent [112] or Ca2+-independent [109, 113].

6. Future experiments

Our future studies will need to determine: 1) whether PKG-Iα is the only isoform of PKG
expressed in other human ovarian cancer cell lines as well as in tumor samples of ovarian
cancer patients, 2) the subcellular localization of PKG-Iα (and possibly PKG-Iβ), for exam‐
ple, membrane, nuclear, and/or cytosolic localization, 3) the roles of PKG-Iα, its downstream
phosphorylation of CREB at Ser133 (and other transcription factors), expression of the IAPs
and anti-apoptotic Bcl-2 family proteins in ovarian cancer cells.
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7. Conclusions

The NO/cGMP/PKG-Iα pathway and the downstream phosphorylation of the actin-fila‐
ment/focal-adhesion-regulating protein VASP at Ser239 appear to promote migration/inva‐
sion and the downstream phosphorylation of BAD at ser155, CREB at ser133 and c-Src at
ser17 appear to promote DNA synthesis, cell proliferation and platinum resistance in ovari‐
an cancer cells. The unique features of this signaling pathway in ovarian cancer cells may
provide a novel therapeutic target for disrupting tumor growth and the metastasis and sec‐
ondary tumor formation during ovarian cancer progression.
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