The Pelvic Pressure Pack and the Uterovaginal Balloon System

G. A. Dildy III

When pharmacologic and conservative surgical interventions fail to correct postpartum hemorrhage (PPH), hysterectomy most often becomes the option of last resort. Contemporary reports on the incidence of obstetric hysterectomy range between 0.29 and 0.77 per 1000 deliveries. Under these circumstances, a moderately busy obstetric unit with 4000 deliveries per year may perform as many as three emergency hysterectomies annually. This is especially true for women undergoing multiple repeat cesarean deliveries. Silver and colleagues reported in the Maternal–Fetal Medicine Units Network examination of 30,132 women undergoing cesarean delivery, that hysterectomy was required in 0.65% of first, 0.42% of second, 0.90% of third, 2.41% of fourth, 3.49% of fifth, and 8.99% of sixth or greater number cesarean deliveries.

A systematic review of 981 cases of emergency postpartum hysterectomy reported an overall maternal mortality rate of 2.6%. The maternal mortality associated with obstetric hysterectomy is higher (4–12.5%) in resource poor countries, but not unheard of (0–4%) in developed areas for a number of reasons, often relating to the moribund condition of the patient when the operation commences, the difficulty of the procedure itself, particularly in the presence of factors which make the anatomy unclear, and the extent of the bleeding which may accompany the operation. Indeed, Clark and colleagues reported an average estimated blood loss of 3.5 liters during emergency obstetric hysterectomy. Furthermore, as the original extent of bleeding may have been underestimated, thus delaying resuscitation, surgical intervention and administration of blood component therapy, uncontrollable hemorrhage may be the event that mandates the hysterectomy. As recounted in several other chapters in this Textbook, severe hemorrhage and emergency hysterectomy are often accompanied by secondary coagulopathy. In the setting of acquired coagulopathy, posthysterectomy bleeding may continue despite secure surgical pedicles, much to the consternation of the surgeon and the members of the operating team.

Abdominal and pelvic postsurgical packing is an old concept and one that has been used to control hemorrhage from a variety of sources, including liver trauma, pre-eclampsia-induced hepatic rupture, rectal cancer, gynecologic cancer and, more recently, retroperitoneal packing as a part of damage-control surgery for trauma-related pelvic fracture management. Various packing methods have been described, such as the ‘bowel bag’ or packing with dry laparotomy packs. These methods, however, require re-laparotomy after initial stabilization to remove the packing materials. Other reported methods for packing, albeit not requiring re-laparotomy but with limited cumulative obstetric experience, include transcutaneous placement of an inflated condom over a 22-Fr catheter or ribbon gauze within a Penrose drain.

In 1926, Logothetopoulos described a pack for the management of uncontrolled posthysterectomy pelvic bleeding. This technique has subsequently been called the mushroom, parachute, umbrella, pelvic pressure, or Logothetopoulos pack. It is important to note that the pelvic pressure pack described is applied posthysterectomy, and it should not be confused, as it often is, with uterine packing or with various intrauterine balloons for treatment of PPH due to uterine atony or placental site bleeding which are described in Chapters 47, 48 and 54 of this volume.

The pelvic pressure pack controls hemorrhage from large raw surfaces, venousplexuses and inaccessible areas by exerting well distributed pressure, compressing bleeding areas against the bony and fascial resistance of the pelvis. According to Parente and colleagues, several references to the pelvic pressure pack appeared in European medical journals during the decades following the original report. The first reported cases appearing in the English literature were not until the 1960s, and these pertained specifically to gynecologic posthysterectomy hemorrhage; since then, several case reports and a case series for obstetric posthysterectomy bleeding have been published. Table 1 summarizes these cases, for control of gynecologic and for control of obstetric posthysterectomy hemorrhage, with success rates of 100% and 85%, respectively. Admittedly, accurate success rates are difficult to determine based on rare cases collected retrospectively, with possible underreporting of unfavorable outcomes. Nonetheless, successful control
of severe hemorrhage appears to have been achieved in the majority of cases.

As seen in Figure 1, the pack is constructed by filling a bag (we prefer a sterile X-ray cassette drape, but other materials also have been described) with gauze rolls tied end-to-end (in this case, five 11.4 cm × 2.8 m Kerlix rolls), starting at the ‘dome’ of the pack (A), with the ‘tail’ of the gauze protruding from the ‘neck’ of the pack (B–D). Gauze should be removed, as visually indicated, from the pack before placement, in order to fit the true pelvis.

The pack is introduced transabdominally in the posthysterectomy patient into the pelvis (Figure 2), and the ‘neck’ is delivered transvaginally through the introitus by passing a surgical clamp from below through the open vaginal cuff. The surgeon should avoid trapping small bowel behind the pack. Traction and resulting pressure are applied to the pack by tying intravenous (IV) tubing to the neck of the pack and suspending a 1-liter IV fluid bag off the foot of the bed. A 1-liter glass IV bottle and mild Trendelenburg position provide additional weight and traction if needed. The IV tubing or a cord can simply be hung over the foot of the bed, or over an orthopedic pulley attached to the foot of the bed. Compression of the pack can also be maintained by placing the ‘neck’ of the pack through a #80 doughnut pessary (not shown) applied flush against the perineum with a surgical clamp. However, caution must be taken to avoid perineal pressure necrosis.

We advise placement of an intraperitoneal large-gauge closed-system (e.g. Jackson-Pratt) drain to

Table 1  Summary of contemporary cases of the pelvic pressure pack for obstetric and gynecologic posthysterectomy hemorrhage. The success rate is defined as the pelvic pressure pack being the last intervention to control bleeding. Modified from Dildy et al.37

<table>
<thead>
<tr>
<th>Series</th>
<th>Gynecology success rate</th>
<th>Obstetrics success rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parente, 196231</td>
<td>14/14</td>
<td>–</td>
</tr>
<tr>
<td>Burchell, 196832</td>
<td>8/8</td>
<td>–</td>
</tr>
<tr>
<td>Cassels, 198533</td>
<td>–</td>
<td>1/1</td>
</tr>
<tr>
<td>Robie, 199034</td>
<td>–</td>
<td>1/1</td>
</tr>
<tr>
<td>Hallak, 199135</td>
<td>–</td>
<td>1/1</td>
</tr>
<tr>
<td>Howard, 200236</td>
<td>–</td>
<td>1/1</td>
</tr>
<tr>
<td>Dildy, 200637</td>
<td>1/1</td>
<td>7/9</td>
</tr>
<tr>
<td>Total</td>
<td>23/23 (100%)</td>
<td>11/13 (85%)</td>
</tr>
</tbody>
</table>

Figure 2  Diagram of the pelvic pressure pack in situ. See text for further explanation

Figure 1  Photograph of a pelvic pressure pack, as constructed from an X-ray cassette drape, sterile gauze rolls and an intravenous infusion set-up. See text for further explanation
monitor for postoperative bleeding. An indwelling urinary catheter allows monitoring of urine output and avoidance of urinary outflow obstruction. After stabilization of the patient, an attempt to remove the pack transvaginally is made by slowly removing the gauze rolls under intravenous sedation, to allow gradual decompression without inciting bleeding. The optimal time to leave the pack in situ varies, but extended placement has certain risks (see below). Usually transvaginal pack removal is successful, but in some cases the pack will require removal by re-laparotomy or with laparoscopic assistance.

In one study of trauma patients suffering intrabdominal hemorrhage, Garrison and colleagues found that patients who experienced hypothermia, refractory hypotension, coagulopathy and acidosis required early packing if they were to survive. Thus, packing should be considered early on when homeostasis is significantly altered. Febrile morbidity is very common in these critically ill postoperative patients who have already received massive blood component therapy and then have a foreign body placed into a contaminated operative field. Prophylactic broad-spectrum antibiotics should be administered whenever a pelvic pressure pack is placed, and this regimen should be continued after pack removal until the patient is afebrile for at least 24–48 hours. Another study of abdominal trauma patients showed those packed for up to 72 hours had lower abscess, sepsis and mortality rates than those packed for more than 72 hours. Thus pack removal should be accomplished as soon as possible following stabilization.

A newly developed medical device, the Belfort-Dildy Obstetrical Tamponade System, trade named the ebb™ Complete Tamponade System (Glenveigh Medical, LLC, Chattanooga, TN)* was cleared by the US Food and Drug Administration (FDA) in 2010 for use in providing temporary control or reduction of postpartum uterine bleeding when conservative management is warranted. The system (Figure 3) has an upper uterine balloon approved for filling to 750 ml and a lower vaginal balloon approved for filling to 300 ml. While not yet studied in, or cleared/approved for, the setting of posthysterectomy pelvic bleeding, future research may be warranted to determine whether this device may prove effective in controlling such cases.

In summary, the pelvic pressure pack is simple to construct from commonly available medical materials, and control of hemorrhage is successfully achieved in the majority of cases. If the pelvic pressure pack fails to control bleeding, other medical, surgical, or interventional radiology approaches will be necessary to ultimately control bleeding. The pelvic pressure pack should be particularly useful in developing countries where more advanced surgical skills for pelvic vascular ligation and technologies, such as selective arterial embolization, are not readily available. In developed countries, the pelvic pressure pack may serve as a temporizing measure pending transport to a tertiary care facility. In the majority of instances, the pelvic pressure pack will afford transfer of the critically ill patient to a postsurgical recovery setting, where restoration of hemodynamic, thermal, hematologic and acid–base homeostasis can be accomplished.

References


Disclosure: As the name of the device indicates, the author of this chapter, Gary A. Dildy, MD, is one of the co-inventors (along with Michael A. Belfort, MD, PhD) of this medical device. As such, and in the interest of full disclosure, the author wishes to note that he has a personal financial interest in the device’s commercialization.


